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Abstract
The Android Framework is designed around components

with asynchronous interfaces, in which inputs and outputs

are not directly coupled. Precisely specifying behavior of this

sort is a slow, error-prone process, and thus documentation

and testing for such components is usually incomplete. I have

participated over the last year in a collaborative research

project seeking to solve this problem by automating the

generation and verification of these specifications via active

learning on a live Android system. Part of my work has

been the extension of our automation technique to Android

Framework components with non-deterministic behavior that
prevents direct application of active learning algorithms. To

this end, I have applied our learning engine in the form of a

specification assistant which mixes automation and manual

guidance to learn non-deterministic interfaces with as little

user intervention as possible.
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Figure 1. Learning Purpose alphabet for Speech Recognizer

Background
The interfaces of asynchronous components—in the form of

Java classes—found in the Android Framework are divided

into callin and callback methods. A user of the class gives it

inputs by invoking some of its callin methods, which return

immediately. The response to those callins comes some time

later when the class invokes some of its callback methods,

which notify the user of some completed task or provide re-

sults. Specifications for asynchronous classes can be encoded

by a form of graph known as an interface automaton (as seen
in Figure 3). Active learning algorithms such as L

∗
can auto-

matically learn correct, complete behaviors represented by

interface automata by performing selected sequences of in-

puts to a system and recording their responses. [1]. The core

of our project is an active learning engine which implements

this technique for class objects in a live Android system.

While powerful, active learning cannot be directly ap-

plied to interfaces which are non-deterministic [1]. This

unfortunately makes a large portion of class interfaces in

the Android Framework impossible to infer in a totally au-

tomated manner, because many depend on environmental

conditions in ways that make their behavior effectively non-

deterministic.

Approach
To address this limitation, I have augmented our core active

learning engine to perform as an interactive specification as-
sistant. The tool, called DroidStar, is used by incrementally

building up the set of callin and callback methods to be stud-

ied in a Java interface called the LearningPurpose (Figure 1).
Inference proceeds as a series tests chosen by L

∗
, in the form
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Figure 2. Environment lifting
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Figure 3. Learned asynchronous typestate for the Speech

Recognizer class

of prefix-closed callin sequences during which callbacks are

observed and recorded. If the tool observes non-deterministic

behavior during this attempt (by caching and comparing the

results of prefixes), it terminates immediately and presents

the user with the offending query and disagreeing responses.

With this information, the user manually “determinizes” the

interface in one of two ways:

Output merging If two non-deterministically chosen

callbacks take the system to a common state, the user

can “contain” the non-determinism bymerging the call-

backs in the LearningPurpose, replacing them with

a single output symbol that both callbacks report. If

the merge was incorrect, the non-determinism will

necessarily propagate to actions after the merged out-

put and the user will be alerted immediately. Figures

1 and 3 provide an example of this method with the

onFinished and onError outputs.

Environment lifting If the non-deterministic choice de-

pends on an environmental condition that can be con-

trolled by the active learning system, the relevant ma-

nipulation of that condition can be encoded as an addi-

tional input. For example, a choice of callbacks that de-

pends on the existence of a file in the Android device’s

file-system can be determinized by creating inputs that

create and delete that file. Figure 2 demonstrates this

lifting; The environmental condition of a file existing

or not existing is represented by black and white cir-

cles. Non-deterministic states (the half-filled circles)

are determinized by explicit input actions so that sen-

sitive inputs (such as readFile() in the figure) are

performed on determined states only.

Both of these strategies are enabled by the flexibility of

the LearningPurpose interface; input and output symbols

defined in the LearningPurpose need not map directly to

individual callin and callback methods of the class.

The inference of partially non-deterministic interfaces via

guided user interaction is a unique approach. Prior work

that has been able to address non-determinism has been

based in static analysis of synchronous components through

symbolic evaluation or predicate abstraction, in which all

behavioral branches can be enumerated and explored [2, 3].

The learning approach of the project for which DroidStar

was produced [4] is based on dynamic testing in order to

reasonably target the size of Android Framework code and

complexity of asynchronous interfaces, to which symbolic

methods are unlikely to scale.

Results
Of the 10 commonly used Android Framework classes we

have used to evaluate the DroidStar tool [4], 3 required

the non-determinism handling approach I’ve discussed here:

FileObserver, SpeechRecognizer, and SQLiteOpenHelper.
FileObserver and SQLiteOpenHelper both interact with

the Android device’s file-system and thus required lifting of

environment actions to fully explore their behaviors.

In the SpeechRecognizer case, where the output merg-

ing strategy was used, we discovered a bug in the form of

three spurious states where the class gets stuck, triggered

by a series of inputs which manual testing previously re-

quired for non-deterministic classes would be unlikely to

find. In Figure 3, these spurious states are marked with ques-

tion marks. The one reached by stopL() from the starting

state is inescapable, meaning that calling stopL() on a fresh

SpeechRecognizer object effectively kills it. The ∆ tran-

sition is a virtual input used to by DroidStar to poll for

callbacks, which should not appear in sensible typestates; its

presence there indicates a race condition.
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