
High-level Programming for Replicated Data Types

Nicholas V. Lewchenko
University of Colorado Boulder

ABSTRACT

Replicated data types (RDTs) are a useful program model
for services that require stable availability in the face of
geographic separation and high traffic. Availability in such
a system, however, comes at the cost of difficult correctness
reasoning. I am working on a domain-specific language for
RDT applications which enables automated verification of
program safety properties and allows a developer to maximize
replica parallelism (and thus availability) without needing to
reason about event orderings or inter-replica communications.

1 BACKGROUND

A replicated data store design consists of two parts: an RDT
which represents the store’s data and primitive operations,
and a communication network between the store’s replicas
through which they synchronize their activity. The choice
of network impacts the system’s correctness and efficiency.
A simple network model such as causal broadcast, which
propagates all updates that enter replicas and guarantees
only a causal ordering, allows highly available replicas and
low overhead, but makes logical errors in the system (such
as double-spending, in the case of a bank system) impossible
to prevent. More complex systems that prevent such errors
must sacrifice either availability (replicas must coordinate
before performing updates) or simplicity/overhead (replicas
must arbitrate conflicting updates and roll one back after the
fact).

Mixed consistency network models have been proposed
which selectively force coordination between replicas for cer-
tain updates designated by the developer [2, 3], behaving
as a simple causal broadcast system otherwise. Such models
gain efficiency while maintaining correctness, but they are
difficult to use. The virtue of replicated data stores—that
they are written and behave essentially as ordinary sequen-
tial systems—is lost on the developer who must now reason
about which orderings of events to allow. Worse is that these
low-level configurations must be reevaluated for each new
application’s safety requirements, even if they use common
underlying RDTs.

2 APPROACH

I am developing a programming model for replicated appli-
cations using mixed-consistency network mechanisms which
does not require the developer to think about concurrent
executions and which enables automated verification of the
program properties which the mechanisms are intended to
preserve. In this model, RDT definitions are extended with
a set of query predicates which can be applied to the store

Conference’17, July 2017, Washington, DC, USA

2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

value. Updates which depend on the value of the global store
(and may behave inappropriately if their replica is not up
to date) must explicitly request that information using a
particular query predicate, thus declaring precisely the level
of accuracy they require. Developers interact with this new
aspect of the RDT rather than directly with the network’s
consistency mechanisms.

type CState = Int
data CEffect = Add Nat | Sub Nat
data CQuery = Eq | Lte | Gte | Any

type Counter = RDT CState CEffect CQuery

Figure 1: A definition for the Counter RDT

type BankOp = Operation Counter

depo s i t : : Nat −> BankOp
depos i t n = emit (Add n)

withdraw : : Nat −> BankOp
withdraw n = do accountValue <− query Lte

i f accountValue >= n
then emit (Sub n)
else noEf f e c t

Figure 2: Operations defined over the Counter for a
replicated bank account application

As an example, consider a replicated bank account using
a counter (an integer value supporting add and subtract) as
its datatype. In a purely sequential sense, a safe withdrawal
operation must check that the account has enough money
before it takes effect, to prevent overdrafting. In the example
code from Figure 2, we see that withdraw accesses the account
value using the “Lte” query, meaning that it requests a value
that is less than or equal to the true account value. We can
verify that this implementation behaves safely using standard,
automatable sequential logic [1]. At this level of the design,
we only need to verify the interaction between our invariant
(account always ≥ 0) and the query interface provided by
the Counter (enumerated as CQuery in Figure 1). Verifying
the relationship between the Counter’s interface and the
underlying network is performed independently.

For replicated data types which are SMT-representable
(such as the Counter), the network configurations necessary
to execute each supported query, and thus satisfy our earlier
assumptions, can be generated automatically. These configu-
rations are not specific to any one application (such as the
bank account); they can be reused wherever the RDT is

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Nicholas V. Lewchenko

needed. In our example, the network will require replicas
to coordinate when executing withdraws (because the Sub

n emitted from one withdraw could invalidate the result of
another’s Lte query), but deposits can execute immediately
because they make no query.

3 IMPLEMENTATION

I am implementing this programming technique as an embed-
ded monadic DSL in Haskell, and intend to use particular
language features available in this environment for increased
expressivity and automation. As demonstrated in the example
code from Figures 1 and 2, I am studying the representation of
store queries and effect emissions as monadic functions. This
representation would require the support of nested queries,
which may not be meaningfully implementable with current
mixed-consistency network mechanisms. I hope that in this
case, the language development can inspire the complex net-
work protocols needed to realize it.

My adviser and I have developed a formal theory for decid-
ing minimum network consistency requirements on queries
and using these results for operational reasoning, automating
the process using an SMT solver. I would like to integrate
this method of verification directly into the code-writing pro-
cess by using extensions to Haskell’s type system, namely

refinement types as provided by LiquidHaskell [4]. The
primary contribution to which I am eventually aiming this
work is a library of RDTs with clear, verified query interfaces,
which developers can employ efficiently in unique distributed
applications without ever needing to consider the network
mechanisms that keep them running safely.

REFERENCES
[1] C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Pro-

gramming. Commun. ACM 12, 10 (Oct. 1969), 576–580. https:
//doi.org/10.1145/363235.363259

[2] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno
Preguiça, and Rodrigo Rodrigues. 2012. Making Geo-replicated Sys-
tems Fast As Possible, Consistent when Necessary. In Proceedings
of the 10th USENIX Conference on Operating Systems Design
and Implementation (OSDI’12). USENIX Association, Berkeley,
CA, USA, 265–278. http://dl.acm.org/citation.cfm?id=2387880.
2387906

[3] KC Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan.
2015. Declarative Programming over Eventually Consistent Data
Stores. In Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI
’15). ACM, New York, NY, USA, 413–424. https://doi.org/10.
1145/2737924.2737981

[4] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis,
and Simon Peyton-Jones. 2014. Refinement Types for Haskell. In
Proceedings of the 19th ACM SIGPLAN International Conference
on Functional Programming (ICFP ’14). ACM, New York, NY,
USA, 269–282. https://doi.org/10.1145/2628136.2628161

https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
http://dl.acm.org/citation.cfm?id=2387880.2387906
http://dl.acm.org/citation.cfm?id=2387880.2387906
https://doi.org/10.1145/2737924.2737981
https://doi.org/10.1145/2737924.2737981
https://doi.org/10.1145/2628136.2628161

	Abstract
	1 Background
	2 Approach
	3 Implementation
	References

